Partocle swarm Optemesoution
Ex To optencse the function $\quad f(x)=x_{1}^{2}+x_{2}^{2}$ Heme $-5 \leqslant x_{1}, x_{2} \leq 5$ Using PSO minimize the function $f(x)$
Sol' let we generate 5 swarm using uniform distribution. the ne possition vector x and velocity vector v is given below.

$$
X=\left[\begin{array}{l}
2.7045,4.8030-x_{1} \\
4.5974,2.8793-x_{2} \\
1.8710,4.0528-x_{3} \\
1.6400,1.3202-x_{4} \\
3.3392,0.9963-x_{5}
\end{array}\left[\begin{array}{ll}
x_{11} & x_{12} \\
x_{21} & x_{22} \\
x_{31} & x_{32} \\
x_{41} & x_{42} \\
x_{51} & x_{52}
\end{array}\right]\right.
$$

The velocity vector is generated inform on range $[0,1]$

$$
V=\left[\begin{array}{ll}
0.4752 & 0.6987- \\
0.4141 & 0.4020- \\
0.7797 & 0.9433- \\
0.6183 & 0.4749- \\
0.2530 & 0.9398-v_{1} \\
v_{2} & v_{5}
\end{array}\left[\begin{array}{ll}
v_{11} & v_{12} \\
v_{21} & v_{22} \\
v_{31} & v_{32} \\
v_{41} & v_{42} \\
v_{151} & v_{52}
\end{array}\right]\right.
$$

By using the inctiocl fitness vector the fitness value of even swam n poorticle is for

$$
\begin{aligned}
& x_{1}=f\left(x_{1}\right)=(2.7045)^{2}+(4.8030)^{2}=30.3831 \\
& x_{2}=f\left(x_{2}\right)=(4.5974)^{2}+(2.8793)^{2}=29.4265 \\
& x_{3}=f\left(x_{3}\right)=(1.8710)^{2}+(4.0528)^{2}=19.9258 \\
& x_{4}=f\left(x_{4}\right)=(0.6183)^{2}+(0.4749)^{2}=4.4325 \\
& x_{5}=f\left(x_{3}\right)=(0.2530)^{2}+(0.9398)^{2}=12.1429
\end{aligned}
$$

Here the minimum value is 4.4325 , zeefor the swarm m x_{4}, which is the beet sal? oct (orth (itteration) at this tome.
So 4.4325 is the ghost value of partuce x_{y}.
As this is the ot struatiry, so even particle current possition is also the pbest possition. Now we have to update the possition vector and velocity vector for atenaction 1. by using the alynamie equation as below.

$$
v_{1}^{t+1}=v_{i}^{t}+c_{1} \gamma_{1}^{t}\left(\text { pest } i_{i}^{t}-p_{i}^{t}\right)+c_{2} \gamma_{2}^{t}
$$

The position vector wall be

$$
P_{i}^{t+1}=P_{i}^{t}+v_{i}^{t+1}
$$

Here

$$
\begin{aligned}
& c_{1}=c_{2}=2 \\
& r_{1}=0.34 \\
& r_{2}=0.86
\end{aligned} \quad\left\{0 \leq c_{1}, c_{2} \leq 2\right)
$$

2.te- 1 (velocity of v_{1}^{1}

$$
\begin{aligned}
v_{11}^{\prime} & =v_{11}^{0}+c_{1} \gamma_{1}(\text { Pbest } \\
= & 0.475+2 \times 0.34(2.7045-2.7045)+2 * 0.86 \\
& =-1.35574 \quad(1.6400-2.7045)
\end{aligned}
$$

possition of x_{1}^{\prime}

$$
\begin{aligned}
\Rightarrow x_{11}^{\prime} & =x_{11}^{0}+v_{11}^{1} \\
& =2.7045+(-1.35574) \\
& =1.34876
\end{aligned}
$$

Now, we houre to check the condition that updated the possition vaure must be within the seaveh spocere ite $(-5$ to 5$)$
theree 1.34876 is within $(-5$ to 5) So it can be xecueptoble.
for and componet $(x, 2)$.

$$
\begin{aligned}
& V_{12}^{1}=V_{12}^{0}+c_{1}^{r} r_{1}\left(\text { Pbest }_{12}^{0}-x_{12}^{0}\right)+c_{2} r_{2}\left(\text { ghert12 }^{-x_{12}^{0}}\right) \\
& =0.6987+2 * 0.47(4.8030-4.8030)+2 * 0.91 \\
& (1.3202-4.8030) \\
& =-5.351696 \\
& x_{12}^{1}=x_{12}^{0}+v_{12}^{0}=4.8030+(-5.351696) \\
& =-0.5406 \text {. }
\end{aligned}
$$

So-0.5ut aleo lies in the reange $(-5,5)$

So it can be aeceptable,
So the first partices $29 x_{1}$ after the -1st itferiction the postion becomes

$$
x_{1}=(1.34876,-0.5486)
$$

Similanily for second partice x_{2}

$$
x_{2}=(-0.0752,3.0942)
$$

for $3^{\text {rd }}$ panticue

$$
\begin{aligned}
& v_{31}^{\prime}=v_{31}^{0}+c_{1} r_{1}\left(P_{\text {serst31 }}-x_{31}^{0}\right)+c_{2} r_{2} \\
& (\text { gbest } \\
& \left(x_{1}-x_{31}^{0}\right) \\
& =0.7797+2 * 0.98(1.8710-1.8710)+2 * 0.86 \\
& (1.6400-1.8710) \\
& =0.3824 \\
& x_{31}^{\prime}=1.8710+0.3824=2.2534 \\
& x_{32}^{\prime}=3.1379 \\
& \text { so } x_{3}^{\prime}=(0.3824,3.1379)
\end{aligned}
$$

for $4^{\text {th }}$ porrticu

$$
x_{y}=(2.2583,1.7951)
$$

for $5^{\text {th }}$ panficre venter after list ithercatiry will be

$$
\begin{aligned}
X^{\prime} & =\left[\begin{array}{cc}
1.3487, & -0.5486 \\
-0.0752, & 3.0442 \\
2.2534, & 3.1379 \\
1.6400,1.3202 \\
2.2668, & 2.0009
\end{array}\right] \text { and } \\
V^{\prime} & =\left[\begin{array}{l}
-1.3357,-5.351696 \\
-4.6726,0.2149 \\
0.3874, \\
0.6183,0.9149 \\
-1.0724,1.0046
\end{array}\right]
\end{aligned}
$$

Mow the pantere fittness volume using the function $\left(f(x)=x_{1}^{2}+x^{2}\right)$ for x will be

$$
\begin{aligned}
& x_{1}=f\left(x_{1}\right)=(1.3487)^{2}+(-0.545)^{2}=2.1200 \\
& x_{2}=f\left(x_{2}\right)=(-0.0752)^{2}+(3.0942)^{2}=9.5797 \\
&=14.9242 \\
& x_{3}= \\
& x_{4}==8.3223 \\
& x_{5}= \\
&=9.1420
\end{aligned}
$$

No. the prest and glost value unes be. (6) change

In $0^{\text {th }}$ stteration the fitthess vacue of eaen panticle is
for $1^{\text {ust }}$ ateratern the fittness vaure of each ponticu is

$$
\begin{aligned}
& \text { in pontice is } \\
& x_{1}-\left[\frac{2 \cdot 1200}{9 \cdot 5+97}\right] \\
& x_{2}-\left[\begin{array}{l}
9 \cdot 5 b e s t \\
x_{3}-9242 \\
x_{4}-\left[\begin{array}{l}
14 \\
x_{5}-3223 \\
9 \cdot 1420
\end{array}\right]
\end{array}\right] . \text { panticu) }
\end{aligned}
$$

Sinilomy, we have to uptlocte the pocsition vectur of eocen pantive unbess all are convergene toone pount/to reocln x stoppuriy critercio."

Tteration 1:	Tteration 2:
Tteration 3:	Tteration 4:
Tteration 5:	Tteration 6:

